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Abstract-Hashing methods have been widely used for simi-
larity search in multimedia due to its low memory requirements
and efficient and scalable search. Recently, an approach called
Semantic Preserving Hashing (SePH) has been proposed, which
uses the semantic probabilities of training data, approximates
them with the learnt hash codes and then uses the kernel logistic
regression for learning the projection of features to the learnt
hash codes. In this paper, we extend this method using a Bayesian
framework to learn these projection functions, motivated by the
probability distribution that visual features tend to approximate.
The proposed _!!ayesianrjdge-based Semantic Preserving Hashing
(BiasHash) approach is shown to outperform seven state-of-the-
art methods on three benchmark datasets.

I. INTRODUCTION

Image retrieval is the field of study concerned with search-
ing, browsing and retrieving digital images from database. The
main challenges are (a) the semantic gap between the low-level
feature representing and high-level semantics in the images,
and (b) the curse of dimensionality, since visual descriptors
usually have hundreds or even thousands of dimensions. A
hash-based index offers reduced storage, by storing only com-
pact binary codes in the index, and constant average response
time. Therefore, we focus on hashing methods in order to use
fast search through hash-indexed data instead of inefficient
exhaustive search, and in parallel we aim to minimize the
aforementioned semantic gap for effective image retrieval.

Hashing approaches are categorized into single-view [1],
[2], [3], [4], [5], [6], [7] and multi-view [8], [9], [10], [11],
[12], [13], [14], [15]. The former approaches use only one
view, while the latter approaches importantly support many
views/modalities (text, image, video). Another categorisation
is based on the nature of the hashing functions used to generate
the binary codes. Early approaches to hash-based indexing
used manually-tuned hashing functions (e.g., [16]), but more
recent hashing approaches use either unsupervised learning [3],
[7] or supervised learning [9], [4], [10], [11], [12], [13], [17],
[5], [6], [14], [15] methods to generate the hash function.

A relatively recent supervised hashing method, Semantic
Preserving Hashing (SePH), has been proposed in [9]. It
generates one unified hash code for all observed views of any
instance. It transforms the semantic affinities of training data
into a probability distribution and aims to approximate it with
another one in Hamming space, via minimizing their Kullback-
Leibler divergence [18]. Then it uses kernel logistic regression
to learn the hash codes.
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Fig. 1: Histogram ofVGG16 vectors for MIRFlickr25K, NUS-WIDE
and COCO CAPTIONS datasets.

State-of-the-art hashing approaches require significant
training data to learn hash functions, before they can be
applied. We observe that modern image features for typical
benchmark collections follow statistical distributions closely;
Figure 1 show that features from pre-trained VGG-16 network
closely follow the Gaussian distribution [19], for the MIR-
Flickr25K, NUS-WIDE, and COCO CAPTIONS collections,
respectively. However, if the training set is small, or the train-
ing data does not adequately represent the image collection,
then current hashing approaches will perform sub-optimally.

A major advantage of Bayesian estimation is that one can
incorporate the use of a prior, or assumed knowledge about
the current state of "beliefs", and how the evidence might
update those beliefs. One can use a Bayesian approach in a
hashing framework, so that it depends less on the unbalanced
dataset and produces compact binary codes. This benefit is
much appropriate in supervised hashing methods, where often
the datasets are very unbalanced and thus the way of splitting
the dataset into query, training and retrieval sets affects the
performance of retrieval.

In this work, we therefore propose a Bayesian-based super-
vised hashing method. Our method preserves the advantages of
hashing methods (low memory requirements, low complexity
time), while it exploits the advantages of Bayesian framework
to learn hash functions, in such a way that the choice of the
training data can be considered almost or totally negligible. We
expect that it can outperform the existing supervised methods,
due to its weak dependency on the splitting of the dataset.

II. METHODOLOGY

Figure 2 shows an overview of the proposed BiasHash
framework. In an offline phase, it computes the affinity ma-
trix from training label vectors (Step 1) and the semantic
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Fig. 2: Overview of the proposed indexing method.

probabilities from affinity values (Step 2). Then it projects
these values to the learnt Hamming probabilities solving a
minimization problem (Step 3). The Hamming vectors are
stored in a database (Step 4). The approach extracts the visual
features from training images (Step 5) and learns the hash
functions (Step 6) from the visual vectors to Hamming codes
using Bayesian ridge regression. In the online phase, for a
given query, the approach extracts the visual feature (Step
7) and computes its Hamming code using the learnt hash
functions (Step 8). Finally it computes the Hamming distances
between query and database codes in GPU (Step 9), ranks the
results and returns the top-k most relevant (Step 10).

A. Notation

Let 0 be the training set of size 101 = ti, with O, its
i-th instance. We define X E JRnxdx, L E {O, 1}nXI as
the visual features and semantic labels of the training set,
respectively, where I is the total number of labels. For each
instance O, we build the visual feature vector Xi E JRdx

and the semantic feature vector Li,. E {0,1}1. We define
A E [0, l]nxn as the affinity matrix of the training set. We
denote with H E {O, 1}nXdc the learnt hash codes of the
training set. We define each instance of the training set as
u., E {O, 1}dc of code length de. Each row of H (i.e., Hi,)
corresponds to the projection of each semantic instance. The
notation Uk E JRdx corresponds to the learnt hash function of
k-th bit, for 1 ::; k ::; de. We denote by h(.,.) the Hamming
distance between two hash codes. We denote with cX the hash
codes of respective visual features X and with c%the k-th bit
of hash code CX E {O, 1}dc of visual feature x E JRdx, for 1 <
k ::; de.

B. Semantics Preserving Hashing

As the proposed method builds on SePH, we describe that
method first, and then outline the differences in the following
subsection. As described above, the SePH first computes
the affinity matrix A using the cosine similarity of corre-

<L L >
sponding semantic label vectors Ai,j = IILi,"'lllllt, II (1).

Then the probabilities are: Pi,j = Ln L~i,j. . A.. (2)
t=l ]=l,]#t t,]

in semantic space P. From the work of van der Maaten
and Hinton [20], we know that a Student t-distribution with
one degree of freedom is utilized for transforming each
pairwise Hamming distance into a probability. Hence, the

_ (Hh(Hi, ,Hj, ))-1 (3) h
qi,j - L~~1 L;:'~1 m k(Hh(Hk, ,Hm,)) 1 computes t e
corresponding probabilities qi,j of instances in Hamming space
Q.

This framework uses Kullback-Leibler divergence to mea-
sure the differences between Q and P. Therefore, it can learn
the optimal binary hash code matrix H of training set by
minimizing it, However, this minimization problem is NP-hard
[21] and therefore we relax H to a real valued matrix iI in
Eq. (4):

n n
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(l+IIH -if 112)-1with q . = " ]'. 2. (5), I]f is the
l,J L~~1 L;:'~1,m#(HIIHi, -Hdl~)-1

minimization problem, I E {1}nxdc, a is a model parameter
for weighting quantization loss and C = n x de is a normal-
ization factor to make the parameter tuning for a less affected
by the hash code length and the training size.

The minimization problem of Eq. (4) is an unconstrained
non-convex optimization problem and thus we can derive only
a locally optimal iI. We use stochastic gradient descent [22]
to find iI and it computes a Hamming space matrix H =
sign(iI). Then it uses kernel logistic regression [9] to learn
the hash function that projects the visual features to derived
hash codes H. With learnt hash functions for indexing process,
the view-specific hash codes of any unseen instance Zu can be
predicted.

For each query, the approach measures its Hamming dis-
tance from each element in the retrieval set, sorts the retrieval
set in ascending order based on this measure, and then picks
the top k elements from the ordered retrieval set.

More precisely, we define c'l:' as the predictive vi-
sual hash code and let c:, be its k-th bit. Then thec: = sign((¢(Xi, )ii>t)u(k)) (6) computes the predicted hash
codes using kernel logistic regression (6) for 1 ::; k ::; de
and u(k) E JRdx• <P is the kernel feature matrix and ¢(Xi,.) is
the transformation of visual feature Xi,. in the Reproducing
Kernel Hilbert Space (RKHS).

Similar to most hashing methods, SePH uses Hamming
distance to perform retrieval for query hash code Hq from the
retrieval hash codes:

(7)

where EEldenotes the XOR operation between the bits of Hq
and Hi, and bit_count counts the number of 1 in the binary
XOR result. After that we rank all instances in the retrieval
set based on their Hamming distances in an ascending order
and take the top ones.

C. Hashing with Bayesian Ridge Regression

In our proposed framework, we take as input the image fea-
tures, using some descriptor, and compute the affinity matrix,



Algorithm 11.1 BiasHash method
Input: X E JRnxdx, L =E {O, 1}nXl, Al = A2 = al = a2 =
e-6, de, tol = e-3, maxlter = 300
Output posterior mean u"/: E JRdx

1. Compute affinity matrix A using Eq. (1).
2. Compute semantic space matrix P using Eq. (2).
3. Compute relaxed Hamming space matrix H using Eq.
(4).
4. Set Hamming space matrix H = sign(H).
5. for k in range(de):

6. Set y = H,k.
1 t

Compute a = () -16' A = 1, Z = X y.uar y + 2.22e
Perform SVD on X and get U, S, V.
Compute eigenvalues eigVal = S2.
Initialize posterior mean UkX = None.

(old)
11. for i in range(maxlter):

. A
Update postenor mean u~ = (- Idx + Xt X)-1 xty,

A a
from Eq. (9) and (-;;Jdx + Xt X)-1 x-, yare the
likelihood and the prior mean, respectively.
Compute root mean square deviation
rmse = Ily - Xu~II~·

a x eigVal
Compute M = ----=----

A + a x eigVal
! + 2Al

Update! = L:i,j Mi,j, A = ,.,---,--=---
Ilu~ll~ + 2A2'

7.

8.
9.
10.

12.

13.

14.

15.

n -! + 2al
a=

rinse + 2a2
If i # 0 and Iluk

X - Ukxii < tol:
(old)

break A
Compute u~ = C;/dx + Xt X)-1 xty

19. Compute bit-by-bit hash codes using Eq. (10).

16.
17.
18.

the semantic space matrix, and the Hamming space matrix, as
described above. Inspired by motivation in the introduction,
however, we replace the predictive model of SePH (Equation
(6)) with Bayesian Ridge Regression [23]. It is a linear model
that uses probability distributions rather than point estimation
of linear regression. The linear regression minimizes loss,
while the Bayesian version maximizes the posterior probability
by fitting a probabilistic model. In particular, we have a linear
model:

H,k =Xu~ +E
E ~ N(On' ~2 In)
n; E {O, 1}n

where H,k is the k-th column of learnt hash codes H, and X
are the visual features. We can also formulate it, considering
probability distributions and prior before seeing all data (only
train set), as: H.,k ~ N(Xu~, ~2 In).

We recall the Bayes' formula
P(Xlu~, H,k) * P(u~IH,k) (9)P(u~IX,H,k)

P(X, H,k)
that combines posterior and prior probability: where
P(u~IX,H,k)' P(u~IH,k) are the posterior and prior
probability, respectively, whereas P(Xlu~, H.,k), P(X, H,k)
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Fig. 3: MAP according to training size of MIRFlickr25K, NUS-
WIDE and COCO CAPTIONS datasets for 16 and 128 bits.

are the corresponding likelihood and normalization. Then we
compute posterior mean for each modality using the iterative
method of Tipping algorithm [23], [24] based on parameters
updates proposed by MacKay and set it to u~.

Algorithm II.1 outlines our method. Lines 6-18 describe the
iterative method of Tipping settings and the way of parameters'
update by MacKay. We compute hash codes eX E {O, 1}nXdc

using features and learnt hash functions. Each bit k = 1, ... ,
de of hash code e; = sign(Xi, l.I,Ck)) (10) for a given visual
feature x After Step 19, for a given query image, we extract
its hash codes Hq and based on Eq. 7, we compute similarity
scores with the indexed images in the database.

Ill. EXPERIMENTS

A. Datasets

We use for our experiments MIRFlickr25K [25], NUS-
WIDE and COCO CAPTIONS. From the retrieval set we
pick some instances to form the training set for MIR-
Flickr25K (27.2%), NUS-WIDE (4.28%) and COCO CAP-
TIONS (7.31 %). For each image we use a 4096-D vector from
the fc-7 layer of VGG-16 pre-trained network on ImageNet.
We choose for training 2,000, 3500, 2000 images (Figure
3) from MIRFlickr25K, NUS-WIDE and COCO CAPTIONS
datasets, respectively.

(8)

B. Settings

In our experiments, the affinity matrix A is derived from
the cosine similarity between semantic labels of training data.
Model parameter a = 0.01 for Eq. 4 as [9]. We compute hash
codes of bit length de = 16, 32, 64, 128. As VGG-16 is used
for visual features, we set dx = 4096 for all datasets. We use
four hyperparameters for Bayesian regression, aI, a2, AI, A2
of the gamma prior distributions over a and A and set them
to 10-6 based on [23], [24]. We have designed a method for
solving a uni-modal problem (image retrieval), but most of the
baselines are cross-modal methods (except HCOH). Therefore
we set their corresponding parameters to zero to avoid fusion.

We choose randomly 2,000, images from MIRFlickr25K
and COCO and 2100 images for NUS-WIDE and COCO CAP-
TIONS datasets, respectively. We use mean Average Retrieval
(mAP) (11) to measure the retrieval performance of methods.



TABLE I: Experiments of each method for MIRFLickr25K,
NUS-WIDE and COCO CAPTIONS for code length 16, 32,
64 and 128 bit.

Dataset Method 16bit 32bit 64bit 128bit
SSAH [10] 0.82700* 0.83000* 0.84000* 0.81000*

"" KDLFH [11] 0.82557 0.83014 0.88686* 0.90118
one-r GPSH [12] 0.81435* 0.83133 0.84458* 0.85211...
"" MTFH [13] 0.82088 0.83124 0.86926* 0.88076.'"
~

HCOH [4] 0.57916* 0.57978* 0.58082* 0.58196*
SePH [9] 0.66474* 0.67911* 0.68001* 0.68645*

::.: CSQ [17] 0.82000* 0.83000* 0.87800* 0.88500
BiasHash 0.82758 0.83136 0.89281 0.90765
SSAH [10] 0.71000* 0.72300* 0.71000* 0.69500*
KDLFH [11] 0.80827 0.84113 0.80119* 0.84119*

I"ol GPSH [12] 0.81633 0.84165 0.80470* 0.83027*8
i:: MTFH [13] 0.80453 0.83989 0.80974* 0.84364*
r), HCOH [4] 0.50531* 0.50596* 0.50482* 0.50599*
~ SePH [9] 0.68084* 0.68970* 0.60200* 0.53002*
Z CSQ [17] 0.80200* 0.81600* 0.81300* 0.81800*

BiasHash 0.82264 0.84234 0.81455 0.86139

CJJ SSAH [10] 0.35900* 0.35700* 0.35800* 0.35700*
~ KDLFH [11] 0.63071* 0.65689* 0.72430* 0.75280*
E= GPSH [12] 0.64686* 0.71350* 0.70037* 0.80590*
10. MTFH [13] 0.20462* 0.23702* 0.20482* 0.21321*<U HCOH [4] 0.33401* 0.33645* 0.34014* 0.35439*
0 SePH [9] 0.63601* 0.69357* 0.60312* 0.58722*
U CSQ [17] 0.65410* 0.71380* 0.7211* 0.813000
U BiasHash 0.65760 0.76800 0.76659 0.82223

1 IQI 1 ffii

mAP = IQT ~ mi ~preCiSion(Rj'i) (11)

where Q is the query set. The term of inner sum denotes the
average precision of the i-th query, where tti; is the number
of its ground-truth relevant instances [26], [8] in the retrieval
set, Ri,j is a subset of its ranked retrieval result consisting of
instances from the top one to the j-th ground-truth relevant
one, and precision(Ri,j) measures the precision value in Ri,j.

The proposed BiasHash method is implemented in Python
3.6.9, which is powered by a workstation with Intel Xeon
Silver 4210 CPU (2.20 GHz, 10 cores, and 125GB RAM)
with GeForce RTX2080 Ti TURBO 11GB GDDR6 NVIDIA
GeForce and 18.04.5 LTS Ubuntu software. For more efficient
search for nearest-neighbors we perform Steps 9 and 10 of
the retrieval process on a GPU, to avoid linear complexity
with the number of elements from the database. For the
corresponding implementation we use the cuda-knn method 1,
initially introduced by [27]. We compare our approach with
seven state of the art methods, as also referred in Section
I, with online open-source implementations available SSAH2,
KDLFH3, GPSH4, MTFH5, HCOH6, SePH and CSQ7.

C. Results

Table I shows the mAP for the proposed BiasHash ap-
proach, compared to the seven state-of-the-art methods for

1https:llgithub.com/vincentfpgarcia/kNN-CUDA
2https:llgithub.com/lelan-li/SSAH
3https://github.com/jiangqy/DLFH-TIP2019
4https:llgithub.com/devraj89IGPSH-algorithm
5https:llgithub.com/starxliu/MTFH
6https:llgithub.com/TreezzZ/HCOH_Pytorch.git
7https:llgithub.com/yuanli2333/Hadamard-Matrix-for-hashing
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Fig. 4: Retrieval performance of the proposed BiasHash and
compared methods on the MIRFlickr25K benchmark dataset
with different hash code lengths.

different hash code lengths (length = 16, 32, 64, 128 bit)
in all three benchmark datasets. The symbol * indicates that
the mAP value the BiasHash method is statistically significant
compared to the corresponding method with symbol *, using a
t-test [28] to measure the significance between the results. We
observe that as the hash code length increases, the performance
of the BiasHash mainly increases, reflecting its capability
of utilizing longer hash codes to better preserve semantic
information, but with a memory cost. Only the CSQ baseline
approaches the performance and stability of BiasHash, yet
BiasHash outperforms CSQ with statistical significance in 9
of 12 settings.

Figure 4 shows the retrieved results for one query from the
MIRFlickr25K dataset. The queries were selected as the most
representative from each class. The first column has the query,
followed by the retrieved images. Each row of the tableau
corresponds to the returned results of one method, with the
name of the method and the percentages of overall average
precision at 100 given at the start of each row. We use a green
corner, with a check mark, to indicate that the retrieved image
is relevant to the query and a red corner, with an X, to indicate
that the retrieved image is not relevant. As the figure shows, the
Bayesian method (BiasHash) returns more relevant and highly
ranked retrieved images for this given query image.

IV. CONCLUSION

In this work we have modified the Semantic Preserving
Hashing method by using Bayesian regression as the utilized
predictive model. The advantage of Bayesian Regression is
the adaption of data at hand from their statistical properties
and the ability to include regularization parameters in the
estimation process. We show that the proposed BiasHash
method outperforms seven state of the art methods over three
benchmark datasets. In the future, we plan to compare with
more recent methods and to validate our framework in domain-
specific and multi-spectral image collections.
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