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Abstract—The recent advances in machine learning and the
availability of free and open big Earth data (e.g., Sentinel
missions), which cover large areas with high spatial and temporal
resolution, have enabled many agriculture monitoring applica-
tions. One example is the control of subsidy allocations of the
Common Agricultural Policy (CAP). Advanced remote sensing
systems have been developed towards the large-scale evidence-
based monitoring of the CAP. Nevertheless, the spatial resolution
of satellite images is not always adequate to make accurate
decisions for all fields. In this work, we introduce the notion
of space-to-ground data availability, i.e., from the satellite to the
field, in an attempt to make the best out of the complementary
characteristics of the different sources. We present a space-to-
ground dataset that contains Sentinel-1 radar and Sentinel-2
optical image time-series, as well as street-level images from
the crowdsourcing platform Mapillary, for grassland fields in
the area of Utrecht for 2017. The multifaceted utility of our
dataset is showcased through the downstream task of grassland
classification. We train machine and deep learning algorithms on
these different data domains and highlight the potential of fusion
techniques towards increasing the reliability of decisions.
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I. INTRODUCTION

The Common Agricultural Policy (CAP) of the European
Union (EU) is changing fast. It aims at taking advantage of the
recent advances in information technologies, machine learning
and earth observation to shift towards the evidence-based
monitoring of farmers’ compliance with the rules. CAP Paying
Agencies (PA) of each Member State have to move away from
the currently employed confined and sample-based checks and
adopt practices that will enable them to take informed deci-
sions for the subsidy payments of all parcels. For that, the Area
Monitoring System (AMS) is introduced. AMS refers to the
systematic monitoring and assessment of agricultural activities
and practices using Satellite data (e.g. Copernicus), joined with
data from the Land Parcel Identification Systems (LPIS), but
also other ancillary sources. The Copernicus Sentinel satellite
missions provide optical and Synthetic Aperture Radar (SAR)
data of high spatial and temporal resolution and have been
extensively used for the agricultural monitoring and the CAP
purposes [1], [2].

On the other hand, the main enabler towards the feasibility
of this exhaustive monitoring, is widely considered to be
Artificial Intelligence (AI). In particular, Machine Learning
(ML) and Deep Learning (DL) pipelines are continuously
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being developed and integrated into the operational framework
of the PAs [1], [3], [4], [5], [6]. However, for wall-to-wall and
perfectly accurate assessment on the compliance of farmers,
as required by the new CAP guidelines, the data modality and
spatial resolution (10 m - 60 m) of the Sentinel imagery alone
is not enough. In fact, it is required to incorporate other sources
to complement their weaknesses.

Remote sensing systems usually produce a large volume of
data due to the high spatial, spectral, radiometric and temporal
resolutions needed for applications in agriculture monitoring
[7]. Looking at the current, rapidly advancing, state-of-the-
art in ML for Earth Observation (EO), data availability is
growingly perceived to be of multi-dimensional nature, through
the notion of data variability and data complementarity, on
top of data volume. Thus, more and more heterogeneous
data sources are collected and data fusion techniques are
applied in an attempt to generate enhanced feature spaces
from non-overlapping and complementary feature domains.
In EO applications during the recent years, fusion of data
in different altitude levels, such as UAV and high resolution
satellite images, is very common [8], [9]. However, to convert
the available data into training datasets for ML/DL pipelines,
we also require the relevant annotations, i.e., ground-truth
labels. While satellite imagery is not in short supply, ground-
level observations are hard to find and they lack consistency
in terms of spatial and temporal availability. Apart from being
difficult to acquire, such labels are also the most expensive data
component to generate; not just in terms of monetary cost, but
also in terms of time, workforce and the availability of expert
knowledge for the annotation.

Going back to the new CAP monitoring requirements, PAs
are facing challenges in their attempt to monitor compliance.
Through the implementation of the AMS, the decisions that
will be made for the subsidy allocations of all parcels have to
be supported by evidence, either as a result of the predictions
of ML/DL pipelines, or through photo-interpretation, which is
a common process that the PAs undertake (in retrospect) for
validation purposes and for cases of dispute resolution. Thus,
the need for such a holistic approach regarding annotated data
availability is becoming evident.

Driven by the above, we present an analysis-ready dataset,
annotated with crop type labels, that includes both the space
(Sentinel data) and ground (street-level images) domains. We
formulate this framework of space and ground data avail-
ability using only open-access (Copernicus data and LPIS)
and crowdsourced (Mapillary) data. We present a methodol-
ogy and share the code for i) collecting, ii) processing to
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analysis-ready and iii) annotating (with crop labels) street-
level images. Each street-level image is matched with a time-
series of Sentinel-1 (S1) and Sentinel-2 (S2) data. We use
our dataset to independently train traditional ML and state-
of-the-art DL models on its space and ground data layers, and
we discuss the capabilities of synergistic use by applying late
fusion. All in all, we introduce the idea of space-to-ground
data availability and offer an example curated dataset that
the community is encouraged to work on using DL fusion
models, on both satellite and street-level images, towards fully
exploiting the complementarity of these data modalities for
agriculture monitoring downstream tasks.

II. DATA AVAILABILITY FOR REMOTE SENSING
APPLICATIONS

Our initial approach to this multi-level (i.e., altitude, mode,
angle of sensing etc.) data availability framework includes the
two edges, i.e., space-level (low earth orbit) and ground-level.
In each of these domains, the data outputs differ substantially
in terms of a set of characteristics, such as the spatial and
spectral resolution, the temporal availability, the viewing angle,
the susceptibility to the weather conditions, and the nature of
the conclusions that can be drawn through their use.

A. Sources going from space to ground

Space-level includes acquisitions from EO satellites start-
ing from higher ranges of low earth orbits (e.g. Sentinel 1/2),
and moving down to lower altitudes (e.g. SPOT6/7 and Planet’s
Doves). On the other edge, the ground-level comprises imagery
and acquisitions coming from the street (e.g. Google Street
View, Mapillary and Kakao), as well as in-situ geotagged
photos from mobile phones [10], which is a source that is
already utilized for agricultural monitoring [11] as well as
for validation processes and evidence collection campaigns
of the PAs. Between these two edges of space and ground
data acquisitions, there is the potential to integrate other data
sources from various domains and acquisition altitudes, with
the most common being aerial photos [12] and images from
Unmanned Aerial Vehicles (UAVs) [13].

B. Data availability in agriculture monitoring

1) Space-level datasets: Data availability on the space-
level is quite extensive, with a growing number of EO satellites
providing a consistent stream of data acquisitions over the
globe. The most commonly used data sources on this level
for the CAP monitoring purposes are the Sentinel and Landsat
satellites, with their acquisitions becoming available as open-
access data and on various processing levels. Thus, there is a
plethora of available datasets with annotations for a wide range
of downstream applications. BigEarthNet[14] is a collection
of 590,326 pairs of S1 and S2 image patches over Europe,
annotated with multiple land cover classes. DENETHOR [15]
is a publicly available analysis-ready benchmark dataset which
combines Planet Fusion data, together with S1 radar and S2
optical data. It includes annotations of crop type labels, cov-
ering an area in Northern Germany. ZueriCrop[16] is another
case of a crop classification targeted dataset, containing S2
time series, along with ground truth labels for 116,000 fields
over Zurich. Sen4AgriNet[17] is a benchmark dataset based on
S2 imagery, annotated with crop type labels, which contains

42,5 million parcels, thus, rendering it suitable for the training
of DL architectures. Finally, CropHarvest [18] contains S1 and
S2 time-series, meteorological and topographic data, together
with crop type labels for 90,480 datapoints spanning all around
the world.

2) Ground-level datasets: As previously described and, in
contrast to the space-level datasets, securing availability on
the ground-level is a challenging pursuit. This is both in
terms of finding data relevant to the CAP monitoring domain,
as well as in regards to finding or generating annotations.
The main focus of street-level imagery in computer vision is
commonly the identification of objects and features that are
encountered in urban areas (e.g. cars, traffic signs etc.), driven
by domains of application like self-driving automobiles. Thus,
there is a general shortage in ground-level datasets from rural
areas and, even more, a shortage in annotations of agricultural
interest, with most of the available ones coming from time-
consuming photo-interpretation efforts. Despite the challenges,
some remarkable collections of ground-level datasets exist.
iCrop[19] is a multiclass dataset of 34,117 road view images in
China, annotated with crop type labels. CropDeep[20] includes
31,147 in-situ images and 40,000 annotations related to plant
species classification, captured in a variety of realistic condi-
tions. However, to the authors’ knowledge, the majority of the
available annotated datasets on this level are of significantly
smaller size, which renders the effective training of ML/DL
models through their use more challenging. For example,
Crop/Weed Field Image Dataset [21], comprises 60 images
with vegetation masks and annotations for crops and weeds.

3) Combining Space and Ground: The combined use of
datasets from different sources is a common approach in the
literature for feature enhancement and augmentation of the
training data volume. These combinations are applied in a
variety of ways, like on the measurement level [13], feature
level [12], and decision level [22]. However, such datasets are
usually limited to the space domain (e.g., S1 and S2 [23],
Sentinel and Landsat-8 [22], Sentinel and PlanetFusion [15]
etc.). Consequently, availability on the basis of fusing different
domains (e.g. space and ground) is limited.

C. Ground coverage with crowdsourced and open-access data

Given the amount of ground-level data acquisitions that
are required to match and fully cover a single space-level
acquisition, we are driven towards the need to decentralize
the effort of ground-level data collection and the exploitation
of crowdsourcing platforms like Mapillary, Google Earth Pro
and Kakao. However, while such platforms can offer sig-
nificant volumes of ground-level data, they do come with
certain particularities that need to be addressed before they
can be considered analysis-ready. For instance, crowdsourced
contributions may display discrepancies in the acquisition
methodology. Also, there are no annotations available for most
of the contributions, especially ones of agricultural interest.
To counter this shortage of annotations, methodologies for
their mass generation are capturing the interest of the research
community. LPIS data, which contain georeferenced crop type
labels coming from farmers’ declarations, have already been
used in DataCAP [24] to map crop types to street-level images
based on transformations to the coordinates of the image acqui-
sition. Street2Sat[25] pipeline is aiming to transform geotagged



street-level images to sets of georeferenced points that can
be used as labels for satellite images. In [26], the authors
developed a pipeline for the monitoring of crop phenology
using DL architectures on street-level imagery, reference parcel
data, and ground observations.

III. THE DATASET

In this work, we introduce a multi-level, multi-sensor,
multi-modal dataset annotated with grassland/not grassland
labels for the monitoring of the CAP. We empower the
transition towards the post-2020 CAP guidelines through the
exploitation of the benefits offered by the dataset’s space
and ground components. Our methodology for data collection
and annotation is presented, and the code is available at
https://github.com/Agri-Hub/Space2Ground. We showcase the
multi-faceted utility of our dataset, by applying state-of-the-
art ML/DL architectures for grassland detection on data from
the space and ground domains. On top of the single-domain
results, we apply late-fusion (decision level) to underline the
potential of harnessing our dataset’s multi-modality.

A. Data sources and data collection

We constructed this dataset considering the two edges of
data availability. On the space-level edge, we have included
Sentinel-1 GRD and SLC products and Sentinel-2 multi-
spectral imagery, acquired through the Copernicus Open Ac-
cess Hub. Specifically, from Sentinel-1 we produced VV/VH
backscatter and VV/VH coherence using the snappy library
and from Sentinel-2, we acquired all bands except 1, 9 and 10.
On the ground-level edge, we use the Mapillary crowdsourcing
platform to include street-level images covering our area of
interest. Mapillary data is available for anyone to explore
under a CC-BY-SA license agreement. In order to interact with
the latest version of the Mapillary API (v4), we developed
a Python library. The scripts for downloading imagery from
Mapillary, based on a specific time range for a specific area
can be found on GitHub (https://github.com/Agri-Hub/Callisto/
tree/main/Mapillary). For the annotation of these datasets with
agricultural crop type labels, we use the Dutch LPIS data
which are openly available through the National Georegister
website [27] under no limitations for access and use.

Grassland is the most dominant crop type in the Nether-
lands. In our AOI, there are 55,039 parcels in total and more
than 80% have been declared as Grassland. We excluded
instances without clear spectral signatures or irrelevant to CAP
purposes (e.g. forests, borders adjacent to arable land, etc.) and
heavily impacted by cloud coverage, ending up with a total of
37,041 parcels, out of which 31,350 (84.6%) are grasslands.

B. Methodology of annotation

To annotate our data we use the LPIS dataset. It consists
of shapefiles with geo-referenced parcel geometries, that are
assigned with crop type labels. As Sentinel data are also geo-
referenced, their annotation with these labels is straightfor-
ward. The generation of labels for the street-level images,
though, is a more challenging task. Mapillary includes in-
formation about the coordinates of the sensor in each image
capture and a compass angle to specify the direction towards

which it is facing. To generate annotations for the street-
level images, we fuse them with the LPIS data by applying
transformations to the acquisition coordinates following the
methodology developed in [24]. Using this methodology we
end up with up to 2 labels for each single image (one for the
left and one for the right side of the field of view).

On top of this approach, we apply additional steps to
further refine the images and improve the quality of the anno-
tations. Initially, we split each image in 2 halves, separating the
labels of each side accordingly (with a front-facing acquisition,
each side corresponds to a different parcel). Then, to isolate
and extract vegetation, we keep the 30% top leftmost or
rightmost part (depending on the side) with regards to width,
and the 20% to 50% part with regards to height. Through
these steps, we end up with 36,985 image patches, which are
resized to (260, 260). Subsequently, we filter out ones that
are irrelevant or contain noise (eg. cars, infrastructure, roads,
etc.) in an unsupervised way. In particular, we use a VGG16
pretrained network to extract a representation of each image.
Then, we perform Principal Component Analysis on these
representations and we keep the 100 most important features.
Finally, we fit a k-means model to the aforementioned data to
group them into 200 clusters, and we keep the 50 most useful
ones through visual interpretation. After this filtering step, we
end up with a refined set of 10,102 annotated image patches.

C. Dataset structure

On the space-level, we calculate mean values of Sentinel-1
and Sentinel-2 data for each parcel. Sentinel-1 data are also ag-
gregated on a monthly basis. Consecutively, we create training
and test sets (80%-20%), and store them in csv format. The first
two columns correspond to the the crop label (Grassland/Non-
Grassland) and the unique identifier of the parcel, while the
rest of the columns represent the mean values of the Sentinel
features. On the ground-level, the street level images are also
split into training and test data (80%-20%), and they are
stored in different directories based on their class label. The
image names are in form of {imageID} {direction}, where
{imageID} corresponds to the unique identifier of the image
and {direction} to the direction in which it has been cropped.

D. Dataset utility & downstream tasks

Through the provision of an object-level mapping between
its different data sources, our dataset facilitates the creation of
pipelines that harness it in a multitude of ways. Each single
data source can be used separately for the training of ML/DL
pipelines. Various modes of data fusion are supported, like
measurement fusion of same-level data, feature fusion, and late
fusion of models trained separately on different data layers and
levels. The object-level mapping also allows for any available
annotations to be broadcast to all data sources.

The ground component comes with a set of additional
use cases. Ground data can work as material for validation
of the ML/DL predictions and for the creation of ground-
truth annotations. They are also suitable for other photo-
interpretation tasks. For instance, PAs commonly undertake
photo interpretation effort, for desk inspections, known as desk
on-the-spot-checks (OTSC), and for resolution of disputes.
Models trained on ground-level data can be mounted on



Fig. 1: Methodology for the dataset creation. The Space component consists of S1 and S2 object-based time series data. The
Ground component consists of street-level imagery acquired through the Mapillary platform. Transformations to the acquisition
coordinates are applied to attach LPIS crop type labels to left and right parcels of each image. Each parcel side is isolated and
vegetation patches are extracted. A final cleaning step is applied through k-means clustering and photo-interpretation.

ground sensors (cars, mobile phones, UAVs, etc) to support
inference at the edge. Last but not least, Space-to-Ground data
availability is greatly facilitating the creation of synthetic data
through the use of generative architectures, like Generative
Adversarial Networks (GAN), which are already being applied,
particularly for the translation of data between the domains of
satellite and street-level imagery [28], [25].

IV. BENCHMARKING

We evaluated the performance of a Random Forest (RF), a
Support Vector Machine (SVM) model and three DL models
on our dataset for the task of grassland classification using S1
and S2 data as input. RF and SVM are commonly used for
remote sensing tasks, thus we included it as a benchmark to
compare with the DL models. The different DL architectures
consist of a temporal Convolutional Neural Network (CNN)
[29], an LSTM with 64 hidden units and the same LSTM
model with an additional attention mechanism. Table I depicts
the performance of these models on the test dataset.

TABLE I: Performance metrics for grassland classification
using different models.

Method SVM RF TempCNN LSTM LSTM+Attention
Accuracy 93.69% 94.68% 95.22% 95.14% 95.20%
F1 score 85.22% 88.08% 89.96% 89.85% 90.05%

Apart from the space-level data, we also evaluated the per-
formance of advanced CNNs (e.g. ResNet, EfficientNet, VGG,
Inception) on the street level images. We experimented with
pretrained (on ImageNet) models and the best performance
was achieved by the InceptionV3, with an overall accuracy
of 85%. Therefore, the application of fusion at the decision
level is enabled, by exploiting the predictions derived from
both the space and ground data components. In our case, the
combination of the outputs of these different models, results

to marginal improvement of the overall accuracy. However, we
notice significant enhancement in terms of the confidence of
the final prediction and thus the reliability of the final decision.

V. CONCLUSIONS AND FUTURE WORK

In this work we presented the first dataset that in-
cludes Sentinel-1, Sentinel-2, and street-level images, matched
through the use of geo-referenced crop type labels (LPIS). We
focused on grasslands for a Dutch AOI around Utrecht and
we used openly accessible and crowdsourced data sources. The
code implementation of our methodology is shared, which ren-
ders it reproducible, transferable and extensible for the commu-
nity to utilize and build on top. Performance of the grassland
classification models is impacted by limitations related to the
quantity and quality of the street-level images. With regards to
quantity, larger areas of interest and wider time-frames must
be considered to increase the number of available images. To
this direction, PAs can also exploit the current operational
framework of their daily inspections, and mount cameras on
the field inspectors’ vehicles to automatically capture imagery
during their field visits. From the image quality perspective,
pointing cameras on the side can dramatically increase the
percentage of vegetation per image and cover larger portions of
the parcels. In addition, vegetation extraction can be improved
through the application of semantic segmentation and creation
of appropriate masks [30]. The potential for application of
various fusion approaches will be further explored, in order
to highlight the interoperability and complementarity of our
dataset’s layers and domains.
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L. Leal-Taixé, and X. X. Zhu, “Denethor: The dynamicearthnet dataset
for harmonized, inter-operable, analysis-ready, daily crop monitoring
from space,” 2021.

[16] M. O. Turkoglu, S. D’Aronco, G. Perich, F. Liebisch, C. Streit,
K. Schindler, and J. D. Wegner, “Crop mapping from image time series:
Deep learning with multi-scale label hierarchies,” Remote Sensing of
Environment, vol. 264, p. 112603, 2021.

[17] D. Sykas, M. Sdraka, D. Zografakis, and I. Papoutsis, “A sentinel-2
multi-year, multi-country benchmark dataset for crop classification
and segmentation with deep learning,” 2022. [Online]. Available:
https://arxiv.org/abs/2204.00951

[18] G. Tseng, I. Zvonkov, C. L. Nakalembe, and H. Kerner, “Cropharvest:
A global dataset for crop-type classification,” in Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

[19] F. Wu, B. Wu, M. Zhang, H. Zeng, and F. Tian, “Identification of crop
type in crowdsourced road view photos with deep convolutional neural
network,” Sensors (Basel), vol. 21, no. 4, p. 1165, Feb. 2021.

[20] Y.-Y. Zheng, J.-L. Kong, X.-B. Jin, X.-Y. Wang, and M. Zuo,
“Cropdeep: The crop vision dataset for deep-learning-based
classification and detection in precision agriculture,” Sensors,
vol. 19, no. 5, p. 1058, Mar 2019. [Online]. Available:
http://dx.doi.org/10.3390/s19051058

[21] S. Haug and J. Ostermann, “A crop/weed field image dataset for
the evaluation of computer vision based precision agriculture tasks,”
in Computer Vision - ECCV 2014 Workshops, 2015, pp. 105–116.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-16220-1 8

[22] S. Chen, J. Useya, and H. Mugiyo, “Decision-level fusion of sentinel-
1 sar and landsat 8 oli texture features for crop discrimination and
classification: case of masvingo, zimbabwe,” Heliyon, vol. 6, no. 11, p.
e05358, 2020.

[23] V. Sitokonstantinou, A. Koukos, T. Drivas, C. Kontoes, I. Papoutsis,
and V. Karathanassi, “A scalable machine learning pipeline for paddy
rice classification using multi-temporal sentinel data,” Remote Sensing,
vol. 13, no. 9, p. 1769, 2021.

[24] V. Sitokonstantinou, A. Koukos, T. Drivas, C. Kontoes, and
V. Karathanassi, “Datacap: A satellite datacube and crowdsourced
street-level images for the monitoring of the common agricultural
policy,” in MultiMedia Modeling. Cham: Springer International
Publishing, 2022, pp. 473–478.

[25] M. Paliyam, C. L. Nakalembe, K. Liu, R. Nyiawung, and H. R. Kerner,
“Street2sat: A machine learning pipeline for generating ground-truth
geo-referenced labeled datasets from street-level images,” in ICML 2021
Workshop on Tackling Climate Change with Machine Learning, 2021.
[Online]. Available: https://www.climatechange.ai/papers/icml2021/74

[26] R. d’Andrimont, M. Yordanov, L. Martinez-Sanchez, and M. V.
der Velde, “Monitoring crop phenology with street-level imagery
using computer vision,” CoRR, vol. abs/2112.09190, 2021. [Online].
Available: https://arxiv.org/abs/2112.09190

[27] “Ngr nationaal georegister, basisregistratie gewaspercelen (brp),”
https://nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#
/metadata/b812a145-b4fe-4331-8dc6-d914327a87ff, [Online; accessed
11-May-2022].

[28] A. Toker, Q. Zhou, M. Maximov, and L. Leal-Taixé, “Coming down
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